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Abstract 

 Task analytic theories of graph comprehension account for the perceptual and conceptual 

processes required to extract specific information from graphs (Carpenter & Shah, 1998; 

Kosslyn, 1989; Lohse, 1993; Pinker, 1990). Comparatively, the processes underlying 

information integration have received less attention. We propose a new framework for 

information integration that highlights visual integration and cognitive integration. During visual 

integration, pattern recognition processes are used to form visual clusters of information; these 

visual clusters are then used to reason about the graph during cognitive integration. In three 

experiments the processes required to extract specific information and to integrate information 

were examined by collecting verbal protocol and eye movement data. Results supported the task 

analytic theories for specific information extraction and the processes of visual and cognitive 

integration for integrative questions. Further, the integrative processes scaled up as graph 

complexity increased, highlighting the importance of these processes for integration in more 

complex graphs. Finally, based on this framework, design principles to improve both visual and 

cognitive integration are described.   
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Thinking Graphically: Connecting Vision and Cognition during Graph Comprehension 

 Imagine a health scientist attempting to contain the flu epidemic. The scientist may study 

a population density graph (similar to Figure 1) depicting the number of flu cases by county. To 

allocate the limited flu vaccine, the scientist may want to know the specific number of cases in a 

particular county, or the general trend of infected cases. What cognitive and perceptual processes 

are used to extract these different types of information from a graph?   

 Specific information extraction involves searching for a specific data point and 

determining the quantity represented by the data point. Integrating information, which is required 

to determine the trend in a graph, demands the extraction of multiple data points and interpretive 

processes to combine this information into a coherent representation. The goal of this paper is to 

examine the cognitive and perceptual processes used to extract specific information and to 

integrate information, with an emphasis on the integration process.  We elaborate on existing 

frameworks of integration and provide guidelines to facilitate integration in graphs.   

Specific Information Extraction 

 Most theories of graph comprehension have focused on the cognitive and perceptual 

processes underlying specific information extraction from graphs. Specifically, task analytic 

theories (Kosslyn, 1989; Lohse, 1993; Pinker, 1990) provide process description of specific 

information extraction with a focus on relatively simple graph types (i.e. bar and line graphs). 

These theories are remarkably consistent, suggesting the following stages of processing: (1) 

pattern recognition, whereby graph readers encode the visual array and identify visual features of 

the graphical pattern; (2) conceptual relations are determined, giving rise to the quantitative 

meaning of the visual features; and (3) referents of the graph are related to the encoded visual 

features. 
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Several empirical studies have provided support for the task analytic theories account of 

specific information extraction by examining the specific processes that comprise the general 

stages outlined above (Carpenter & Shah, 1998; Lohse, 1993; Peebles & Cheng, 2003). First, 

parts of the question may be read multiple times (Peebles & Cheng, 2003). Next, the participant 

searches for the specific information on the graph (Stage 1), shifting from the axes to the main 

part of the graph and back again (Stage 2) (Carpenter & Shah, 1998; Lohse, 1993; Pinker, 1990).  

Once the information is found, multiple saccades occur between the main part of the graph and 

the legend to keep the information in memory (Stage 3) (Carpenter & Shah, 1998; Trafton, 

Marshall, Mintz, & Trickett, 2002). Finally, the question itself is answered.   

The perceptual processes underlying specific information extraction have been closely 

examined as well. Cleveland and McGill (1984) identified a set of elementary perceptual tasks 

that are carried out when specific information is extracted from graphs. These perceptual tasks 

have been empirically examined and have resulted in a hierarchical ordering of graph types 

based on accuracy of information extraction. Following this work, Simkin and Hastie (1987) 

showed an interaction between the perceptual decoding of the graph and the judgment task the 

graph reader was attempting to accomplish. Simkin and Hastie suggested several elementary 

processes, (e.g. projection and anchoring) which are used to make comparisons and proportion 

judgments. Thus, both the cognitive and perceptual processes underlying specific information 

extraction are accounted for by the task analytic theories and subsequent empirical studies.  

The Integration of Information 

Historically, the task analytic theories focused on the extraction of specific data points, 

thus, these theories have not been applied with much success to graph integration. For example, 

Carswell (1992) evaluated the predictions of a basic task model of graphical perception, 
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primarily based on Cleveland and McGill (1984), and found task models were more successful at 

accounting for specific extraction tasks than integration tasks. In the last 15 years, there have 

been three notable theories that go beyond pure information extraction to integration. 

Carpenter and Shah (1998) extended the task analytic theories to account for integration 

by suggesting the same stages of processing used for specific information extraction occur for 

integration; however, multiple cycles of processing are required. This integrative framework 

included a pattern recognition stage and two interpretative stages. The pattern recognition stage 

leads to the encoding of a visual pattern by forming a visual chunk.  The interpretive stages 

translate the pattern into its quantitative and qualitative interpretation and relate this information 

to the referents in the graph. These processes are repeated in a cyclical fashion for each visual 

chunk in the graph, with each cycle interpreting a single chunk. 

To demonstrate this cyclical process, Carpenter and Shah (1998) examined graph readers’ 

transitions between regions of the graph (e.g., the graphical pattern, axes, legend, title, etc.). 

Graph readers’ fixations cycled between the different regions for each of the visual chunks 

represented in the graph, suggesting that graph readers cycled between different stages of 

processing. As graph complexity increased (i.e. the number of unique visual chunks), the number 

of transitions between regions of the graph increased, suggesting that a single processing cycle 

was required for each chunk in the graph. Using this high-level transition analysis, Carpenter and 

Shah extended the task analytic theories to account for some integration processes.  

Gillian and Lewis (1994) proposed a model of graphical perception called Mixed 

Arithmetic-Perceptual (MA-P). Gillian and Lewis suggested that the processes used to interpret a 

graph are task specific. MA-P has five stages of processing with several similarities to the task 

analytic theories; however, MA-P contains an explicit spatial component. For specific extraction 
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tasks, the processes are similar to those of the task analytic theories; however, for integration the 

MA-P model relies on the identification of spatial relations (Gillian, 1995). This suggests that in 

order to account for information integration, spatial processing is also required.  

Wickens and Carswell (1995) have proposed the proximity compatibility principle, which 

suggests that information that needs to be integrated should be close in perceptual proximity. 

Perceptual proximity can take the form of being spatially proximate as well being perceptually 

similar (e.g. sharing the same color coding). Thus, this principle also suggests that spatial 

processes may be required for integration. There are several manipulations to increase perceptual 

proximity, many of which follow from Gestalt laws of perceptual organization (for more on 

graphical integration see Wickens and Hollands (2000)). An increase in perceptual proximity 

facilitates integration by reducing search cost and working memory load.  

These different theories addressing integration illustrate several important aspects of the 

integration process. Carpenter and Shah (1998) showed that multiple cycles of forming a visual 

chunk and relating this information to the referents are needed. Gillian and Lewis (1994) and 

Wickens and Carswell (1995) showed the importance of a spatial component. This paper takes 

these findings as a starting point and proposes a novel process theory of integration.  

We suggest that the integration process is more complex than any of these accounts 

alone. Integration during graph comprehension has at least two primary components:  visual 

integration and cognitive integration. First, visual integration must occur between similar data 

points leading to visual clusters. Similarity will usually be based on perceptual features (e.g., 

color), but may also be based on semantic or knowledge-level features (e.g., areas that are 

semantically related), spatial features (e.g., proximity), or other salient features. These individual 

data points will be visually integrated to form higher-order clusters of information. These visual 
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clusters are similar to Liu and Wickens’ (1992) concept of visual chunks of information. Second, 

once aggregate visual clusters have been formed through pattern recognition processes and 

related to the referents, integration must occur between visual clusters that are different in some 

way via a comparison/contrast mechanism. Thus, visual integration results in object like visual 

clusters that can be directly compared to form a coherent representation. This process of visual 

and cognitive integration is iterative and scales with the complexity of the graph: as graph 

complexity increases more cycles of visual cluster formation and comparison are required.  

This model of integration combines and further specifies the previous models 

substantially. The visual integration component, which focuses on explicit pattern recognition 

processes, provides detail at a lower level than Carpenter and Shah (1998). The cognitive 

integration component is a novel process of direct comparisons of visual clusters and differs 

from Carpenter and Shah’s model. This model also describes the spatial component of 

integration more explicitly than Gillian and Lewis (1994) and Wickens and Carswell (1995) and 

further illustrates the importance of spatial processing, as other authors have claimed (Trafton et. 

al., 2000; Trickett & Trafton, 2006).  

The Current Study 

 We examined graph readers’ cognitive and perceptual processes as they answered 

specific information extraction and integration questions. We expect to find general support for 

the task analytic theories account of how graph readers extract specific information. For 

integration questions, we expect to find general support for the multiple cycles of processing 

suggested by Carpenter and Shah (1998). In addition to this cyclical process, we expect to find 

evidence for visual cluster formation and comparison and these processes should correspond to 

performance on the task.   



Ratwani, Trafton, & Boehm-Davis: Thinking Graphically     8      

 

Specifically, the visual integration process should manifest itself as explicit fixations 

defining distinct visual clusters of information. These visual clusters can then be explicitly 

compared to each other to develop a coherent representation of the graph. This cognitive 

integration can be shown in many ways; in this study we operationally define this process as 

comparisons (verbal or perceptual) between visual clusters. Visual and cognitive integration 

should scale up with complexity: more complex graphs (i.e. a greater number of distinct visual 

clusters) should elicit more explicit cluster formation and explicit comparisons of these clusters.  

To explicitly examine the visual and cognitive integration processes, choropleth graphs 

were used (see Figure 1). These graphs use color or shading of regions to represent magnitude 

(Lewandowsky & Behrens, 1999) and are representative of a class of spatial color coded graphs 

including meteorological and geological graphs, as well as visualizations used in oceanography 

and several other scientific domains. Choropleth graphs were used because of the large graphical 

pattern with several distinct regions which makes them conducive to examining the perceptual 

processes underlying visual and cognitive integration. Further, these graphs are more complex 

than traditional graphs used in graph comprehension studies, representing between 10 and 70 

data points as compared to the 3 to 6 data points of most studies (Lohse, 1993; Pinker, 1990).  

In Experiment 1 we examined graph readers’ verbal protocols as they answered specific 

extraction and integration questions; the focus was on the pattern of processes at the verbal level.  

In Experiment 2 the perceptual processes underlying specific information extraction and 

integration were examined. Experiment 3 focused solely on integration questions. Finally, in the 

general discussion, guidelines for designing graphs to facilitate integration are described.  

Experiment 1 
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In this experiment, participants performed a verbal protocol as they were asked specific 

extraction and integration questions; the focus was on the pattern of processes as they answered 

these questions. We first sought to find evidence for the single cycle and multiple cycle 

processes for specific information extraction and integration, respectively. It is possible that the 

cyclical pattern of integration as suggested by Carpenter and Shah (1998) is limited to certain 

graph types; there have not been many empirical studies examining this multiple cycle process.  

When extracting specific information, we expected to find the single cycle process of 

search, information extraction and finally answering the question. This should be apparent in the 

utterances from the verbal protocol data. Several empirical papers have shown support for these 

processes (Guthrie, Weber, & Kimmerly, 1993; Kosslyn, 1989; Lohse, 1993; Pinker, 1990; Shah 

& Hoeffner, 2002); we expect to find support as well.  

 In contrast, information integration (e.g. determining the trend) should elicit a different 

pattern of processes. The verbal protocol data should provide evidence for multiple cycles of 

processing as suggested by Carpenter and Shah (1998): graph readers should form visual clusters  

 (i.e. refer to different spatial regions of the graph), interpret these clusters in relation to the 

referents, and build a representation by cycling through these stages multiple times. Further, we 

sought evidence for a cognitive integration component; graph readers should explicitly compare 

different visual clusters (spatial regions) in the graph.  

Method 

Participants. Ten George Mason University undergraduate psychology students (6 

females and 4 males) participated for course credit.  

Materials. Four sets of choropleth graphs were created, each contained three to ten 

conceptually related graphs. For example, one set contained three graphs showing the population 



Ratwani, Trafton, & Boehm-Davis: Thinking Graphically     10      

 

for the years 1990, 1995, and 2000. Two sets of graphs were complex, each graph contained 53 

counties (Figure 1), and two sets of graphs were less complex containing nine counties.  

Four types of questions were generated for each set of graphs: describe questions (asked 

for a general description of what the graph represented); integration questions (required general 

trends to be identified); specific extraction questions (required single extractions from the graph); 

and multiple search questions (multiple specific extraction questions). Because the focus of this 

study is on specific extraction and integration we do not discuss the multiple search questions.   

Design. A counterbalanced within participants design was used. Participants first 

received the describe question to orient them with the graph (these data were not analyzed). Half 

of the participants then received the integration questions followed by specific extraction 

questions and the other half of the participants received the reverse order.   

Procedure. Each graph was presented on a single sheet of paper with the questions 

written below the graph. Participants were instructed to answer every question at their own pace 

and were permitted to look back at any of the graphs as needed. Each participant provided a talk-

aloud protocol (Ericsson & Simon, 1993) as they examined the graphs and answered the 

questions. The participants’ verbal protocols and the graphs they examined were videotaped.  

Coding Scheme.  Transcriptions of the verbal protocols were coded prior to data analysis. 

The protocols were segmented into individual utterances. Utterances were defined as a complete 

thought and utterances that were not germane to the task were eliminated from further analysis 

(see Trickett and Trafton (2007) for a full description of this process). Each remaining utterance 

was then coded in the following ways: qualitative extraction (extracting general conceptual 

information from the graph); quantitative extraction (extracting specific quantitative information 

from the graph); explicit search (looking for a specific object or county); reasoning (constructing 
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a “story” of what was happening in the graph or making inferences that went beyond the data); 

or cognitive integration (making comparisons or forming relationships with the information 

extracted from the graph).  A second independent coder coded 25% of the protocol data.  Inter-

rater reliability was calculated using Cohen’s Kappa, kappa = .91, (p<.001), with inter-rater 

agreement at 93.1%. See Appendix A for coding details.  

Results and Discussion 

 Types of Extractions.  Raw frequencies were normalized by dividing the number of each 

extraction type by the number of questions that were asked (Table 1). A repeated measures 

ANOVA was used to examine question type (specific extraction, integration) and extraction type 

(quantitative, qualitative). The main effect of question type was significant, F(1,9) = 8.7, MSE = 

.14, p <.05, η2 = .5, suggesting that participants extracted different types of information for 

specific questions as compared to integration questions. The main effect for type of extraction 

was marginal, F(1,9) = 3.9, MSE = .05, p=.08, η2 = .3. The interaction between question type 

and extraction type was significant, F(1,9) = 211.6, MSE = .05, p<.001, η2 = .96. To explore this 

interaction, we performed multiple Tukey HSD post-hoc analyses. A greater number of 

quantitative extractions were made when answering specific extraction questions (M = 1.1, SD = 

.05) as compared to integration questions (M = .1, SD = .2), p < .01. A greater number of 

qualitative extractions were made when answering integration questions (M = 1.5 SD = .5) as 

compared to specific extraction questions (M = .3, SD = .3), p < .01. This clearly shows that 

graph readers extracted different types of information depending on the question type.  

Transition Diagrams. To examine the cycles of processes that occurred during specific 

information extraction and integration we calculated transition probabilities and created one deep 

transition diagrams for each question type.  To do this, we looked at the sequence of utterances 
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in the verbal protocols and coded each pair of utterances (1st utterance to 2nd utterance, 2nd 

utterance to 3rd utterance and so on) by the type of utterance each pair represented (e.g., search 

followed by search, or search followed by quantitative extraction). A percent of each type of 

transition was then calculated by taking the proportion of each transition type relative to all 

transitions. Diagrams were constructed to illustrate these transition probabilities; only those links 

that occurred 4% or more of the time are represented.   

 When graph readers extracted specific information there was evidence of the single cycle 

process, as Figure 2 shows. The pattern of processes is in agreement with the task analytic 

theories: most of the time graph readers read the question and directly extracted quantitative 

information in one cycle. Occasionally they verbalized the search process and then extracted the 

information directly.  Notice that search was the only repetitive process: participants would 

occasionally make multiple utterances about the status of their search for the target. 

In contrast, as shown in Figure 3, several cycles of processing were needed to answer the 

integration questions. This cyclical nature of processing was evident in several ways.  First, 

cognitive integration utterances frequently followed other cognitive integration utterances.  

Second, cognitive integration and qualitative extraction cycled between each other.  Finally, 

qualitative extractions frequently followed other qualitative extractions.  Importantly, when 

integrating information the pattern of processes included cognitive integration: graph readers 

made explicit comparisons between different areas of the graph as opposed to strictly making 

qualitative extractions. Statistical comparisons of the pattern of processes in Figures 2 and 3 

were not performed because the specific processes that occurred for each question type were 

entirely different from each other, this precluded any statistical comparisons.  Nonetheless, a 
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visual comparison of Figures 2 and 3 clearly show differences that will be explored in later 

analyses. 

While this experiment illustrated multiple cycles of processing with cognitive integration 

for integration questions, the specific perceptual processes remain unclear. In particular, how 

were graph readers extracting qualitative information when answering integration questions and 

what perceptual processes underlie the process of cognitive integration? The overarching goal of 

Experiment 2 was to understand the perceptual processes that underlie the differences in specific 

information extraction and integration with a focus on the integration process.   

Experiment 2 

In this experiment we collected eye movement and verbal protocol data as participants 

answered specific extraction and integration questions. First, we directly compared the 

perceptual processes during the pattern recognition stage as participants answered these 

questions. Second, we focused on the integration process and sought to tie the eye movement 

data to graph readers’ verbal responses to understand how visual integration and cognitive 

integration give rise to a coherent representation of the graph.  

Perceptual Processes during the Pattern Recognition Stage 

To understand the perceptual processes underlying the differences in the type of 

information extracted by question type found in Experiment 1, we examined the location of 

graph readers’ fixations on the graphical pattern. For specific information extraction, researchers 

have shown that graph readers examine specific locations to find the target and extract the value 

associated with that target point (Trafton et al., 2002). Thus, we expect graph readers’ fixations 

to be concentrated on the inside of counties reflecting a read and search process.  
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The perceptual processes underlying information integration are not as clear. Graph 

readers may focus on specific counties, just as with specific information extraction, and mentally 

combine this information in an aggregate manner resulting in qualitative responses. 

Alternatively, visual integration may be used during the pattern recognition stage. Visual 

integration involves the explicit formation of visual clusters of information. In the choropleth 

graphs used here, groups of same colored counties may constitute a visual cluster (Brewer & 

Pickle, 2002; Herrmann & Pickle, 1996; Lewandowsky et al., 1993). While graph readers may 

form visual clusters in several ways, there is some evidence that fixating on distinguishable 

boundaries allows for segmentation into unitary objects (Bravo & Farid, 2002; Schyns & Oliva, 

1994). Thus, we have used the explicit fixation to the boundaries of groups of same colored 

counties as a measure of visual cluster formation.  

These different hypotheses about integration lead to two diverging predictions in regards 

to the location of fixations. If graph readers are paying attention to individual counties, there 

should be no difference in fixation locations between specific extraction and integration 

questions. However, if visual integration is used, there should be a greater number of fixations to 

the boundaries of groups of same colored counties; we term these fixations “cluster-boundary” 

fixations. Further, there should be a pattern to these cluster boundary fixations such that they are 

in service of forming a quantifiable number of visual clusters.  

Visual Clusters and Cognitive Integration 

Next, we focused on tying the pattern recognition processes to cognitive integration. Our 

model of integration suggests two critical processes: (1) visual clusters are formed during the 

pattern recognition stage (visual integration), and (2) these visual clusters, in addition to being 

related to their referents, are directly compared to each other (cognitive integration). As graphs 
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increase in complexity, the visual and cognitive integration processes should scale up as well. 

While Experiment 1 provided some support for these processes, in this experiment eye 

movement and verbal protocol data were collected to provide additional support for visual and 

cognitive integration by focusing on three critical points.  

First, if the visual clusters formed during visual integration are used to reason about the 

graph during cognitive integration, the number of visual clusters found from eye tracking should 

relate to the number of verbal clusters in the verbal data. Second, after forming visual clusters, 

graph readers should not only relate these clusters to the referents of the graph, but also to other 

visual clusters. Finally, if integration depends on comparing visual clusters to each other, then 

performance on the task, measured by quality of answer, should relate to these comparisons.  

Method 

Participants. Seventeen George Mason University undergraduate psychology students 

(10 females and 7 males) participated in this experiment for course credit.  

Materials. Choropleth graphs which displayed the populations of thirty-two counties 

were used in this experiment; each county was marked by a single unique letter or number 

positioned in the center of the county to allow for more accurate eye tracking. Each county 

differed in size, the smallest county subtended 2.4˚ of visual angle, while the largest county 

subtended 3˚ of visual angle. A total of fourteen different maps were generated, each map was 30 

x 34 centimeters. Seven of the maps had three clusters and seven of the maps had seven clusters. 

The coding scheme on the legend was in color and was the same for all of the graphs; this 

scheme did not follow any logical order. For each graph, participants were asked a specific 

extraction and integration question. The specific extraction question changed for every graph; the 

integration question remained the same and always asked the participant to determine the trend 
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in the graph.  The maps and questions were randomized for each participant. Eye movement data 

were collected using an LC Technologies Eyegaze Analysis System heads free eye tracker 

operating at 60HZ (16.7 samples/second) with gaze position accuracy of less than 0.5˚ of error. 

The eye tracker used corneal reflection to record eye movements; a chin rest was used to reduce 

recalibration. The eye tracker was run from a single desktop PC running Windows 2000.   

Design. The complexity of the graph (3 cluster vs. 7 cluster) and the type of question 

being asked (specific extraction vs. integration) were examined in this experiment using a within 

participants design. Each participant answered a specific extraction and integration question for 

each graph on independent trials. Thus, each participant viewed a total of twenty-eight graphs 

and answered fourteen questions of each type. The order of graph presentation was randomized.  

Procedure. Participants were seated approximately 46 centimeters from the monitor and 

placed their chin on a chin rest for added head stability; the eye tracker was then calibrated. Each 

participant was instructed to read each question out loud and answer each question out loud as 

they examined each graph; the eye track data and the verbal responses occurred concurrently. 

Pilot testing showed that verbal responses did not disrupt the recording of eye movements; this 

was determined by having pilot participants look at predefined locations while talking and 

measuring their deviation from the predefined locations. Each question was displayed in the 

middle of a blank screen. The participant used the mouse to move on to the next screen which 

displayed the graph and legend. The experiment was self paced and the participant could not 

return to view the screen that displayed the question for each particular graph; thus the 

participant had to remember the question for each graph (cf Peebles & Cheng, 2003).  

Coding Scheme. A fixation was defined as a minimum of five eye samples (~100 msec) 

within 10 pixels (approx 2˚ of visual angle) of each other, calculated in Euclidian distance. The 
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center of gravity of the fixation was based on taking the average of the Cartesian coordinates of 

all included eye samples. The location of each fixation was coded relative to the actual clusters 

of same colored counties in the graph and was coded as either a cluster boundary fixation or an 

inner fixation (see Figure 4). A cluster boundary fixation was directed to the boundary between 

clusters of different colored counties. An inner fixation was completely in one color region, thus 

an inner fixation may have been to the junction of two same colored counties or completely 

within a single county. Cluster boundary and inner fixations were coded to test the hypothesis 

that visual clusters were formed by fixating on the boundaries of clusters as opposed to being 

formed by fixating on individual counties within the clusters. Each of the specific areas of the 

graph discussed above was defined as an area of interest to analyze the eye track data.    

We also implemented a coding scheme to calculate the actual number of visual clusters 

formed in each graph. A sequence of fixations was defined as forming a visual cluster if it met 

one of two criteria. First, a consecutive sequence of at least two fixations to opposite edges of 

boundaries of a single cluster of same colored counties qualified as a visual cluster (a group of 

same colored counties in the graph is referred to as a cluster, the actual formation of the cluster 

with explicit fixations is referred to as a visual cluster). Second, if a consecutive sequence of 

fixations was to at least two edges of opposite boundaries of a single cluster plus the center of the 

cluster; this was coded as a visual cluster. A second independent coder coded 25% of all the eye 

track data. Inter-rater reliability was calculated using Cohen’s Kappa, kappa = .965, (p<.001), 

with inter-rater agreement at 97.3%. 

Performance Measures. Participant responses were graded to measure performance. For 

specific extraction questions the responses were graded as correct or incorrect depending on 

whether they identified the specific value associated with the target county in question. For 
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integration questions responses were graded on a 1-5 scale depending on how well the 

information in the graph was synthesized. A score of 1 was assigned to responses that simply 

identified areas in the graph while a score of 5 was assigned to responses that identified several 

different areas in the graph and synthesized this information to form a coherent representation. 

The details of this grading system can be found in Appendix B.  

Results and Discussion 

The coded eye fixation data were analyzed in relation to the total number of fixations to 

the graph; thus a percent of fixations relative to the location of all fixations to the graph was 

calculated. Performance on the specific questions was very accurate (greater than 98%) with no 

difference between simple and complex graphs (p>.9); this performance measure will not be 

discussed further.  Performance on the integration questions is discussed later in this section.  

Location of Fixations and Pattern Recognition Processes. We first examined the number 

of inner fixations by graph complexity and question type. The main effect of question type was 

significant: specific questions elicited more inner fixations as compared to integration questions, 

F(1,16) = 65.6, MSE = 87, p<.001, η2 = .8. The main effect of complexity was significant as 

well: the complex graphs elicited fewer inner fixations as compared to simple graphs, F(1,16) = 

81.5, MSE = 26, p<.001, η2 = .84. The interaction of question type and complexity was 

significant, F(1,16) = 10.3, MSE = 12.3, p<.01, η2 = .39. The interaction was driven by the few 

inner fixations in the complex graph when answering integration questions, as shown in Figure 5.  

Next, we examined the number of cluster boundary fixations by graph complexity and 

question type. The main effect of question type was significant: integration questions elicited 

more cluster boundary fixations than specific questions, F(1,16) = 74.5, MSE = 52.7, p<.001, η2 

= .82, as Figure 6 shows. The main effect of complexity was significant: the complex graphs 
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elicited more cluster boundary fixations than the simple graphs, F(1,16) = 82.5, MSE = 25.9, 

p<.001, η2 = .84. The interaction was significant, F(1,16) = 19.2, MSE = 14.3, p<.001, η2 = .55. 

The interaction was driven by the large number of cluster boundary fixations in the complex 

graphs when answering integration questions. 

 Together, these results clearly show that different perceptual processes occurred during 

the pattern recognition stage when answering specific and integration questions. Specific 

questions elicited primarily inner fixations reflecting the process of searching for the specific 

county of interest. Integration questions elicited more cluster boundary fixations and fewer inner 

fixations as compared to the specific questions. The increased number of cluster boundary 

fixations supports the visual integration hypothesis; graph readers looked to the cluster 

boundaries to form visual clusters. One thing to note is there were still a large number of inner 

fixations when integrating information. This issue was further explored in Experiment 3.  

Evidence of Forming Visual Clusters. Next, we examined whether the cluster boundary 

fixations were in service of forming visual clusters. There was no evidence of visual cluster 

formation when answering specific extraction questions. When answering integration questions, 

graph readers formed significantly more clusters in the complex graphs (M = 4.8, SD = .2) than 

the simple graphs (M = 2.1, SD =.1), F(1,16) = 61.33, MSE = 1.07, p<.001, η2 = .78. These 

results show that at the perceptual level, visual clusters were being formed when answering 

integration questions (but not extraction questions).  When integrating information, the pattern of 

visual cluster formation mirrors the cluster boundary fixation data as well. More complex graphs 

elicited more cluster boundary fixations and more visual clusters.  Next, we attempt to relate 

visual cluster formation to cognitive processes.  
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Connecting Visual Integration and Cognitive Integration. To tie visual integration during 

the pattern recognition stage to cognitive integration, we sought to examine the relationship 

between the eye-movement data and what participants actually said (the verbal data). First, we 

compared the number of visual clusters formed at the perceptual level to the number of 

qualitative extractions at the verbal level, a paired samples t-test demonstrated that they were not 

significantly different, t(16) = .68, p = .51. Further, we ran a standard multiple regression 

predicting the number of qualitative extractions at the verbal level from cluster boundary and 

inner fixations. The overall regression equation was significant, F(2,33) = 38.62, p<.001, and 

accounted for 71% of the variance in qualitative areas discussed at the verbal level; cluster 

boundary fixations loaded significantly, t = 4.47, p<.001, while inner fixations did not load 

significantly, t = 1.14, p = .26. The regression equation is as follows:  

Qualitative Verbal Extractions = 1.34 + (.12 x cluster boundary fixations) + ε 

An additional regression analysis was conducted with the inner fixations that were not 

directly on county labels (i.e. non-reading fixations) to determine whether these fixations played 

a role in predicting qualitative verbal extractions. In this regression, qualitative extractions were 

being predicted from cluster boundary and non-reading fixations. The results of the regression 

equation did not change; cluster boundary fixations were the only significant predictor. These 

analyses are important for two reasons. First, it shows cluster boundary fixations, not inner 

fixations, are critical to integration. Second, it shows that these visual integration processes are 

tightly linked to cognitive integration. These analyses support the hypothesis that visual clusters 

formed during pattern recognition are then used to reason about the graph using cognitive 

integration. Next, we look for explicit evidence of cognitive integration and the direct 

comparison of visual clusters to each other.  
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Perceptual Transitions and Cognitive Integration. To determine how graph readers 

performed integration at the cognitive level, we examined the transitional patterns in the eye 

movement data. We focused on the action immediately following the formation of a visual 

cluster. If cognitive integration was used, graph readers should have transitioned from one 

cluster to another as opposed to just relating the visual cluster to the referent (the legend).  The 

percentage of cluster to cluster and cluster to legend transitions are displayed in Figure 7. The 

main effect of complexity was not significant, F(1,16) = 1.17, MSE = 86.31, p = .3, η2 = .13. The 

main effect of transition type was significant; there were more cluster to legend transitions as 

compared to cluster to cluster transitions, F(1,16) = 36.17, MSE=498.31, p<.001, η2 = .63. The 

interaction was significant, F(1,16) = 16.41, MSE = 160.37, p<.001, η2 = .45. Tukey HSD post-

hoc comparisons reveal this interaction was driven by no statistical difference in cluster to legend 

transitions between simple (M = 50.41, SD = 15.4) and complex graphs (M = 40.41 SD = 10.2); 

however, there were significantly more cluster to cluster transitions in the complex graphs (M = 

20.29, SD = 4.8) as compared to the simple graphs (M = 5.41, SD = 1.1), p<.001. 

While there were more cluster to legend transitions than cluster to cluster transitions 

overall, there were still a substantial number of cluster to cluster transitions in the complex 

graphs (approximately 20%). Thus, there is some support for cognitive integration. At one level 

the small number of cluster to cluster transitions in the simple graphs is not very surprising: 

because there were only three actual clusters in the simple graph, there are likely to be a small 

number of cluster to cluster transitions.   

Cognitive Integration and Quality of Response. To determine whether cognitive 

integration was related to how well graph readers were able to answer the integration questions, 

we examined the correlations between the perceptual transitions and the quality of answer 
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ratings. There was no difference in the quality of response for simple (M = 3.51, SD = .98) and 

complex graphs (M = 3.53, SD = .94), F(1,16) = .03, MSE = .15, p = .9, η2 = .002, thus, we 

collapsed across complexity. Overall, cluster to cluster transitions significantly correlated to the 

quality of answer ratings (N = 17), r = .55, p<.05. The cluster to legend transitions did not 

significantly correlate (N = 17), r = -.12, p =.6. The significant correlation between the cluster to 

cluster transitions and the quality of answer suggests that cognitive integration is an important 

component of the integration process. Explicit visual cluster comparisons seem to be important 

to integration while cluster to legend transitions do not seem to be as relevant.  

Summary. We first focused on differences in pattern recognition processes based on 

question type. Specific extraction questions elicited inner fixations reflecting the search process 

while integration elicited cluster boundary fixations suggesting visual cluster formation.  

Focusing on the integration process, the cluster boundary fixations were shown to be in service 

of explicit visual cluster formation. Further, these perceptual processes (specifically the cluster 

boundary fixations) predicted the number of qualitative extractions at the verbal level connecting 

visual and cognitive integration. Finally, the perceptual transition analysis showed that cluster to 

cluster transitions were part of integration and significantly correlated to the quality of answer.  

With the combination of these analyses, we illustrated the integrative process of 

explicitly forming visual clusters, using visual integration, and then reasoning with these clusters 

by directly comparing them, using cognitive integration. There are, however, a few issues that 

are unclear. First, the number of inner fixations observed when answering integration questions 

was relatively high; second, we expected more evidence of cognitive integration. One possible 

reason for both of these concerns is that graph readers could have been attracted to reading the 

county names on the graphs (MacLeod, 1991; Stroop, 1935) despite the fact that this information 
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was not used to answer the integration questions. This would account for the large number of 

inner fixations. The transition analysis, which hinged on the very next action after forming a 

cluster, may have been affected as well; a distraction caused by reading county labels would 

greatly impact this analysis. In Experiment 3 we removed the county labels to further examine 

the visual and cognitive integration processes.  

Experiment 3 

 Experiment 3 focused solely on integration questions; the main purpose was to remove 

county names from the choropleth graphs to determine, (1) whether inner fixations were a 

necessary part of visual integration and the formation of visual clusters, and (2) to examine 

whether we could find stronger evidence of the cognitive integration process. Removing county 

labels also allowed us to create even more complex choropleth graphs (i.e. greater number of 

actual clusters in the graph). Thus, we could examine how visual and cognitive integration were 

influenced by this greater complexity as well.  

 Integration questions may elicit some inner fixations in service of referencing and 

determining the size of visual clusters. However, we believe the large number of inner fixations 

in Experiment 2 may have been artificially high due to reading and that these fixations were not 

a necessary part of integration. Based on the literature on object segmentation, graph readers 

should be fixating on cluster boundaries (Bravo & Farid, 2002; Schyns & Oliva, 1994). Thus, in 

this experiment we do not expect many inner fixations.  

Method 

Participants.  Sixteen George Mason undergraduate psychology students (9 females and 

7 males) participated in this experiment for course credit.  
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Materials. Each of the graphs displayed the population of 70 counties; the counties did 

not have any labels to distinguish between counties (Figure 8). The size of the counties differed 

with the smallest county subtending .85˚ of visual angle and the largest subtending 1.2˚. The 

sizes of the graphs were the same as Experiment 2. A total of twenty different graphs were 

generated, ten graphs had four clusters (simple graphs) and ten had eight clusters (complex 

graphs). The graphs were displayed in the center of the computer screen and the same eye tracker 

used Experiment 2 was used in this experiment.  

Design. Graph complexity was examined in a within participants design. Participants 

answered an integration question for the ten simple and ten complex graphs.    

Procedure. The procedure was the same as Experiment 2.  

Coding Scheme. The eye data were coded just as they were in Experiment 2. A second 

independent coder coded 25% of the eye data. Inter-rater reliability was calculated using Cohen’s 

Kappa, kappa = .958, (p<.001), with inter-rater agreement at 97.6%. 

Performance Measures. The performance measures were the same as Experiment 2.   

Results and Discussion 

 The eye fixation data were analyzed in relation to the total number of fixations to the 

graph; a percent of fixations (inner or cluster boundary) relative to the location of all other 

fixations to the graph was calculated.  

Location of Fixations. There were more cluster boundary fixations than inner fixations, 

F(1,15) = 38.57, MSE = 27.64, p<.001, η2 = .72. The complex graphs elicited more cluster 

boundary fixations than simple graphs, F(1,15) = 33.71, MSE = 22.30, p<.001, η2 = .69. The 

interaction of fixation location and complexity was significant, F(1,15) = 34.082, MSE = 7.41, 
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p<.001, η2 = .69,  as Figure 9 shows. This was driven by the large number of cluster boundary 

fixations in the complex graphs.  

Removing the county names from the graphs had an effect on the way graph readers 

integrated information. These results show that when graph readers integrated information they 

made many more cluster boundary fixations than inner fixations, this was particularly true in the 

complex graphs. Thus, the large number of inner fixations in Experiment 2 was likely due to the 

existence of county names (presumably a Stroop-like effect) and may not have been necessary 

for information integration.    

Connecting Visual Integration and Cognitive Integration. We sought to tie the visual 

integration and cognitive integration processes by using eye-movement data to predict the quality 

of the verbal responses. The regression equation predicting qualitative responses from inner and 

cluster boundary fixations formulated in Experiment 2 was applied to the eye movement data in 

this experiment. The predicted number of qualitative extractions derived from this equation was 

correlated to the actual number of qualitative extractions; the predicted and actual qualitative 

extractions correlated r = .71, p<.01. The cluster boundary fixations accounted for fifty percent 

of the variance in qualitative extractions discussed at the verbal level. 

 This cross validation makes two important points. First, it stresses the importance of 

cluster boundary fixations to the visual and cognitive integration processes. The reduced number 

of inner fixations in this experiment did not influence the visual integration processes.  Second, it 

illustrates the robustness of the visual clusters. Even though the test set was based on less 

complex graphs that contained county labels, the equation accounted for a large percent of the 

variance in qualitative extractions in this experiment. This suggests that the visual and cognitive 
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integration processes established in Experiment 2 have scaled up for the more complex graphs. 

Next, we examined cognitive integration by focusing on perceptual transitions.  

Perceptual Transition Analysis. The percent of visual cluster to visual cluster transitions 

and visual cluster to legend transitions were examined. The main effect of complexity was not 

significant, F(1,15) = 1.65, MSE = 19.21, p = .22, η2 = .1. The main effect of transition type was 

significant, F(1,15) = 6.47, MSE = 675.82, p<.05, η2 = .3, graph readers made significantly more 

cluster to legend transitions than cluster to cluster transitions. As Figure 10 shows, the interaction 

was significant, F(1,15) = 62.04, MSE = 53.06, p<.001, η2 = .81. Tukey HSD post-hoc 

comparisons reveal that this interaction was driven by significantly more visual cluster to visual 

cluster transitions in the complex graphs (M = 35.88, SD = 7.8) as compared to the simple graphs 

(M = 22.94, SD = 5.2), p<.01, and fewer visual cluster to legend transitions in the complex 

graphs (M = 38.06, SD = 7.9) than the simple graphs (M = 53.81, SD = 10.4), p<.01. There was 

no statistical difference between the number of visual cluster to visual cluster transitions and 

visual cluster to legend transitions in the complex graphs.  

The complex graphs elicited more cluster to cluster transitions than the simple graphs 

suggesting that as graphs became more complex more synthesis using cognitive integration was 

required. Thus, in the complex graphs, graph readers formed more visual clusters and made more 

comparisons amongst these clusters to integrate information. Next, we examined whether the 

quality of response was related to the cognitive integration process.  

Performance and Cognitive Integration. There was no difference in the quality of answer 

ratings between simple (M = 3.8 , SD = .8 ) and complex graphs (M = 3.9, SD = .9), F(1,15) = 

.34, MSE = .08, p = .6, η2 = .02 ; thus, we collapsed across complexity. The number of cluster to 

cluster transitions significantly correlated to the performance ratings, (N= 16), r = .56, p<.05. 
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The number of cluster to legend transitions did not correlate to the performance ratings, (N= 16), 

r = -.43, p=.1. This finding replicates the findings from Experiment 2 and shows that the quality 

of response is closely tied to the amount of cognitive integration. When graph readers made more 

explicit comparisons the quality of answer was more integrative. 

Summary. The location of fixations analysis and the regression equation analysis suggest 

inner fixations were not a necessary part of integration; it is the cluster boundary fixations that 

are important. The perceptual transition analysis showed strong evidence of cognitive 

integration, especially in the complex graphs. Finally, the correlation between visual cluster to 

visual cluster transitions and graph performance suggests that visual clusters are a core 

component of early graph comprehension. These analyses together clearly illustrate the 

integration process: graph readers formed visual clusters by examining cluster boundaries and 

then compared these visual clusters to formulate a coherent representation of the graph.  

General Discussion 

  The goal of this paper was to closely examine the perceptual and conceptual processes 

underlying specific information extraction and integration. For specific information extraction, 

our experiments confirmed the task analytic theories’ account. For integration questions, our 

theoretical framework introduced two components that are needed to form a coherent 

representation of the graph: visual and cognitive integration. Verbal protocols and eye movement 

data provided strong support for both of these components. Visual integration involved the 

explicit formation of visual clusters of information. Cognitive integration involved the explicit 

comparison of these visual clusters to the referents and critically to other visual clusters to form a 

coherent representation. Thus, the visual clusters formed during visual integration served as 

object like units that could then be used to reason about the graph during cognitive integration.  
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Further, as graph complexity increased more visual clusters were formed and explicitly 

compared to synthesize the information in the graph.  

 Theoretical Implications. Previous theories of integration have suggested two major 

processes that are different from the processes used to extract specific information. Carpenter 

and Shah (1998) suggested that multiple cycles of processing are required to integrate 

information and Gillian and Lewis (1994) and Wickens and Carswell (1995) stressed the 

importance of spatial processes. The visual and cognitive integration components that have been 

highlighted in this paper can be unified with these other theories.  

The focus of the Carpenter and Shah (1998) framework was on illustrating multiple 

cycles of processing through pattern recognition and interpretation stages. Our results support the 

multiple cycles as evidenced by the verbal protocols from Experiment 1. Further, the visual 

integration processes which were explicitly examined in this paper are a detailed description of 

the processes that occur during pattern recognition. The cognitive integration process of directly 

comparing visual clusters is a novel process that can be added to the interpretation stages of the 

Carpenter and Shah framework. In addition to relating visual clusters to the referents, we have 

shown that visual clusters are explicitly related to each other within the cycles of processing. The 

process of explicitly comparing visual clusters is a critical component of integration.    

Gillian and Lewis’ (1994) model and the proximity compatibility principle (Wickens & 

Carswell, 1995) stress the importance of a spatial component for integration. Our framework 

suggests that spatial processing is required for both visual and cognitive integration. Specifically, 

during visual integration graph readers must spatially cluster data points to form coherent objects 

and during cognitive integration these clusters must be spatially compared to each other. Further, 

the spatial demands increase with complexity of the graph.  
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 Together, the previous theories and our framework provide a general process model for 

integration in graphs. This general process model can be applied to graph types other than 

choropleth graphs; however, the specific perceptual processes underlying these general 

mechanisms are likely to be different. The general process model contains 3 steps. First, during a 

pattern recognition stage, visual integration occurs: groups or clusters of information are 

explicitly formed. Second, during the interpretive stage, cognitive integration occurs: the visual 

clusters formed during visual integration are related to their referents and are compared to each 

other to form a coherent representation. Finally, this process is cyclical and the number of 

iterations is heavily dependent on the complexity of the graph. More complex graphs will require 

more cycles of visual and cognitive integration; thus, there is more interleaving between the 

visual and cognitive components.  

Guidelines for Facilitating Integration in Graphs.  Several papers provide 

recommendations for improving graph design (Bertin, 1983; Carpenter & Shah, 1998; Gillian et 

al., 1998; Kosslyn, 1989; Shah & Carpenter, 1995; Shah, Mayer, & Hegarty, 1999; Shah & 

Hoeffner, 1992; Pinker, 1990). Our framework can also be used to provide specific guidelines 

for improving integration processes in graphs; specifically, we focus on recommendations for 

complex visualizations (primarily color-coded graphs) where several data points need to be 

represented. The overarching goal in designing graphs for efficient integration should be to 

reduce the number of cycles of processing required to interpret the graph.   

In order to facilitate visual integration, graphs should be designed such that visual 

clusters of information can be easily formulated. Based on our framework we suggest three ways 

of doing this. First, the boundaries of clusters of data should be highlighted such that they are 

easily identifiable. Fixating on these boundaries to form objects (which are later used in 
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cognitive integration) is a critical component of visual integration and these boundaries should 

be highly salient to facilitate this process. A straightforward way of doing this is bolding the 

boundaries. Second, the color schemes used to code the data should allow easily distinguishable 

visual clusters. Perceptually linear palettes (Spence, Kutlesa, & Rose, 1999) where color is 

varied in a single dimension (e.g. varying shades of gray) should not be used to code data 

because they can make unique visual clusters harder to identify. Rather, spectral color palettes 

(e.g. rainbow colors) which allow for easy differentiation between colors should be used. Finally, 

unnecessary labels or markings should be removed since they can impact the process of forming 

visual clusters. These labels can increase the number of fixations required to form explicit 

clusters and thus increase the amount of time and processing required.  

To facilitate cognitive integration graphs should be designed to reduce the amount of 

processing needed to reason with the visual clusters formed during visual integration. There are 

at least two straightforward ways to do this. First, the association between the color-coded data 

and the legend should be intuitive to reduce the number of cluster to legend transitions. 

Empirically, the experiments presented here show that graph readers spend a fair amount of time 

looking to the legend after forming visual clusters. If graph readers can intuitively associate a 

quantitative value with a visual cluster without having to look to the legend this can reduce 

processing requirements. Second, the number of uniquely coded variables in the graphical 

display should be reduced (e.g. don’t have too many color codes). Our framework suggests when 

there are more clusters in the graph the cycles of processing scale with complexity; more cluster 

to cluster transitions and cluster to legend transitions are required. Thus, if the number of coded 

variables can be reduced by having more general categories of data, graph readers can form a 

select number of visual clusters and synthesize this information more easily.   
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Appendix A: Coding Scheme Used in Experiment 1 
 

Quantitative Extractions: Any specific quantitative information extracted from the graphs was 

coded as a quantitative extraction. This could be a specific numerical value or a range of values.   

Examples: The population of Victorville County is 30,457.  

The population of Janis County ranges from 21, 549 – 37, 457.  

The populations of the counties in the northwest corner are 52,337.  

Qualitative Extractions: The extraction of general conceptual information from the graph was 

coded as a qualitative extraction. Common instances of graph readers extracting qualitative 

information was when graph readers assign low, medium or high descriptors to a certain area of 

the graph or when the simply refer to the color of a general area of the graph without relating the 

color to the specific legend value.  

Examples: The cluster of counties in the center has a medium population value.  

There is a large area of blue and a small area of orange.  

Victorville County has a medium low population range.  

Search: The process of search was coded for if the graph reader made explicit references to the 

search process. There must be clear evidence that the graph is actually searching. Thus, there 

must explicit statements like “I don’t see it” or “I am looking for…” 

Examples: Victorville, Victorville, Victorville, I done see Victorville.  

Let’ see, I am looking for Janis County. Where is Janis County? 

Reasoning: Any inference that was made that went beyond the basic data that was displayed in 

the graph was coded as reasoning. The data presented in the graph was relatively context free, 

thus, references to city or country areas in relation to population values is making inferences 
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about the graph. Reasoning involves making statements that clearly go beyond the basic concepts 

that are represented in the graph.  

Examples: Since the outside seems to be the country area the center will grow.  

The most populated area is probably the city center, and the surrounding less populated areas are 

likely to be the suburbs that will grow.  

Cognitive Integration: Making explicit comparisons or forming relationships with the 

information that was presented in the graph was coded as cognitive integration. These 

comparisons must be explicitly stated, thus saying there is largely populated area in the west and 

an area of medium population in the north is not cognitive integration. These are two qualitative 

extractions. To be coded as cognitive integration, the information must be linked by conceptual 

relation.   

Examples: The highly populated area in the center is much larger than the highly populated area 

in the upper left.  

The cluster of counties on the left are nearly double the size of the counties in the lower right 

corner.  
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Appendix B: Performance Rating System for Integration Questions in Experiments 2 and 3. 

Integration questions were rated on a 1-5 scale based well the information in the graph 

was synthesized. Descriptions of the grading system with examples from the actual protocols 

given by participants are given below:  

Score = 1: A few regions of the graph were identified with no synthesis at all.  

Example: In this map the most populated area is in the Southwest corner; the middle section is 

the least populated.  

Score = 2: A few regions of the graph were identified and some statement about the relative size 

of the regions was made or there was some comparison process.  

Example: The largest population is in the Northwest corner and it occupies about a quarter of the 

graph; there is a small group of counties in the South that are the least populated.  

Score = 3: Several regions of the graph were identified with clear evidence of some synthesis 

among the areas identified including some reference to relative sizes of the areas.   

Example: The center of the graph is the least populated, but the size of this region is substantially 

larger than the most densely populated area in the Northwest.  

Score = 4: Several regions of the graph were identified and synthesized with explicit 

comparisons and relations. The relative sizes of most of these regions were identified as well.  

Example: In the northern most area is a large group with the lowest population, but going south a 

little bit is the densest area, which is small. Just below that is a medium sized group that is the 

second most dense and this extends west and almost covers the length of the map.    

Score = 5: There was overwhelming evidence that the graph reader had formed a coherent 

representation of the graph. Several areas of the graph were identified and the synthesis of this 
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information included direct comparisons and information about the sizes of the regions 

identified.   

Example: Ok, the small group in the Northwest is a very low population, but next to it is a very 

densely populated group that is twice the size. To the east of that is another group of the lowest 

population, this is a very small group. Directly below this, adjacent to the border, is a… the large 

group in the map that is orange which is the middle population density range. The large area 

extends almost half the length of the map and occupies the most space.  

 



Ratwani, Trafton, & Boehm-Davis: Thinking Graphically     39      

 

Author Note 

This research was supported in part by grant 55-7850-00 from the Office of Naval 

Research to the second author. We thank Mike Schoelles for his help in programming the 

experiments. We thank Brandon Beltz, Cara Stitzlein and David Cades for their help with 

coding. Parts of Experiment 1 of this manuscript were previously published in:   

Ratwani, R. M., Trafton, J. G., & Boehm-Davis, D. A. (2003). Thinking graphically: Extracting Local and 

Global Information. In R. Alterman & D. Kirsch (Eds.), Proceedings of the Twenty-Fifth Annual 

Conference of the Cognitive Science Society. Boston, MA: Erlbaum. 



Ratwani, Trafton, & Boehm-Davis: Thinking Graphically     40      

 

Table 1. Frequency (percentages in parentheses) of each utterance type by question type.  

 
Utterance Category Specific Questions Integration Questions 

Qualitative Extraction 6 (1.8) 158 (47.3) 
Quantitative Extraction 283 (86.3) 34 (10.2) 
Search 39 (11.9) 0 
Reasoning 0 33 (9.9) 
Cognitive Integration 0 109 (32.6) 

 
 



Ratwani, Trafton, & Boehm-Davis: Thinking Graphically     41      

 

Figure Captions 
 
Figure 1. General example of the type of graph used in Experiments 1-3; the different shades of 

gray were actually different colors. The actual figure can be viewed at {insert web address}. 

Figure 2. Transition diagrams for specific extraction questions. 

Figure 3. Transition diagram for integration questions 

Figure 4. Examples of coded fixations in Experiments 2 and 3; the different shades of gray were 

actually different colors.  The actual figure can be viewed at {insert web address}. 

Figure 5. Inner fixations by question type and complexity. 

Figure 6. Cluster boundary fixations by question type and complexity.  

Figure 7. Perceptual transitions for integration questions.  

Figure 8. Example of a graph used in Experiment 3; the different shades of gray were actually 

different colors.  The figure can be viewed at {insert web address}. 

Figure 9. Location of fixations to the graph. 

Figure 10. Perceptual transitions.  
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Supplemental Materials 
 

Figure 1. Example of the type of graph used in Experiments 1-3.  
 
Figure 4. Example of the coded fixations in Experiments 2 and 3.  
 
Figure 8. Example of a graph used in Experiment 3 with coded cluster. 
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